12021Pigeonite Basalt 1876.6 grams

Figure 1: Photo of 12021,36 showing elongate pyroxene in broken surface.

Introduction

12021 is a porphyritic pigeonite basalt (figure 1) that has been dated at 3.3 b.y. old.

Hörz and Hartung (1972) found that 12021 must have changed orientation at least once because "old" zap pits were found beneath the soil line. In any case, the orientation found by Hörz and Hartung (based on cratered – uncratered surfaces) differs from that found by Sutton and Schaber (1971) (based on surface photography).

Petrography

Weill et al. (1971) describe 12021 as a porphyritic basalt with elongate pyroxene phenocrysts up to 2 cm in length set in a variolitic groundmass of pyroxene, plagioclase and ilmenite (figure 2). Mesostasis includes silica phases, metallic iron, and glass. French et al. (1972) describe 12021 as "generally coarse grained. A striking feature is the presence of large anhedral pyroxene phenocrysts up to 10 mm long. No olivine was observed".

Mineralogical Mode of 12021											
	McGee et	Neal et	Boyd and	Klein et	Papike et	Brown et					
	al. 1977	al. 1994	Smith 1971	al. 1971	al. 1976	al. 1971					
Olivine		1									
Pyroxene	50-71	71.3	64	70.5	62.6	66					
Plagioclase	22-34	25.5	27	22.7	30.7	22.4					
Opaques	5-12	1.7	5	5.5	5.6	11.6					
"silica"	5	0.2	2	1.3	0.3						
mesostasis	0.8				0.8						

Figure 2: Photomicrograph of thin section of 12021,3 showing elongate and sector-zoned pyroxene. Field of view is 3 cm. NASA # S70-25401.

Figure 3: Photomicrographs of large pyroxene in 12021,145. NASA #S70-49467-468. Scale is 2.2 mm.

Lunar Sample Compendium C Meyer 2005

Well et al. 1971

• phenocrysts
• groundmass

Dence et al. 1971

En

Fo

compiled by C Meyer

Figure 5: Additional pyroxene analyses including pyroxferroite (red).

12009, 8

12008, 17

12008, 17

12004, 8

ASSOCIATION
IN OLIVINE
ADJACENT TO SPINEL
INTERSTITIAL TO SILICATES
A GROUNDMASS
O IN SULPIDE
I UNKNOWN

12035, 20

Figure 6: Histogram of Ni conentrations of metal grains in 7 lunar samples (lifted from Brett et al. 1971).

Drever et al. (1972) discuss the texture of 12021 and introduce a new term *intrafasciculate* to describe the hollow cores of elongate plagioclase and pyroxene needles in this rock. They explain that "this intravasciculate texture is closely related to the "plumose" texture commonly referred to as variolitic" in descriptions of Apollo 12 basalts.

Mineralogy

Olivine: none in 12021

Pyroxene: Weill et al. (1971), Klein et al. (1971), Boyd and Smith (1971), Dence et al. (1971), Walter et al. (1971) and Bence et al. (1970, 1971) studied the complex zoning patterns in the large pyroxenes in 12021 (figures 4 and 5). Pigeonite cores have sharp boundaries with augite rims and groundmass pyroxene

is increasingly Fe-rich. Many of the large pyroxene crystals are sector zoned. Papike et al. (1971) and Ross et al. (1973) reported crystallographic data and discussed epitaxy, exsolution and phase relations of pyroxene from 12021.

Pyroxferroite: Boyd and Smith (1971) and Weill et al. (1971) found large (~500 micron) grains of "pyroxferroite" in the groundmass of 12021. When in contact with Fe-augite, the boundary is sharp.

Plagioclase: Plagioclase is An₉₁₋₉₆. Long (1.5 cm) crystals of plagioclase often have a non-plagioclase cores (as in straws) (figure 7, Walter et al. 1971). Wenk et al. (1972) determined crystal structure for anorthite in 12021. This was termed intrafasciulate by Drever et al. (1972).

Figure 7: Hollow plagioclase crystsal in 12021 (from Walter et al. 1971). Field of view about 500 microns.

Figure 8: Unusual group of iron grains in 12021,4. NASA #S70-20751. Field of view about 1 mm. See also figure in Walter et al. 1971.

Opaques: Ilmenite, chromite, troilite and tranquillityite (see metal).

Silica: In 12021, cristobalite occurs as clear, subhedral grains up to 75 microns across, and displays characteristic mosaic twinning and curved features (Weill et al. 1971). Tridymite forms long needles. Appleman et al. (1971) and Dollase et al. (1971) reported the crystal structure of tridymite in 12021.

Metal: Brett et al. (1971) determined that there was essentially no Ni content in the metallic iron grains in 12021 (figure 6) while Walter et al. (1971) reported

Figure 9: Composition of lunar basalts with that of 12021 indicated.

Figure 10: Normalized rare-earth-element composition diagram for 12021 (data from table 1).

0.5 wt. % Ni in iron needles in pyroxene (figure 8). This is unusual when compared with other lunar basalts.

Chemistry

The chemical composition of 12021 was determined by numerous investigators, using a variety of techniques (table 1). This sample is found to be relatively low in Mg (figure 9). It has a relatively flat REE pattern (figure 10).

Radiogenic age dating

Cliff et al. (1971) determined a mineral isochron in the Rb/Sr system for 12021 with an age of 3.3 ± 0.1 b.y (figure 11). Papanastassiou and Wasserburg (1971a) reported 3.33 ± 0.06 b.y. (figure 12).

Figure 11: Rb/Sr isochron for 12021 (from Cliff et al. 1971).

Cosmogenic isotopes and exposure ages

Marti and Lugmair (1971) determined a $Kr^{81} - K^{83}$ exposure age of 303 ± 18 m.y.

Other Studies

Fleischer et al. (1971) determined the nuclear track densities in pyroxene and estimated the surface residence time. Price et al. (1971) reported track lengths > 1mm in pyroxene apparently due to highenergy, heavy ($Z \sim 80$) cosmic rays.

Processing

Originally some small pieces (,1 to ,15) were broken off one end. Then a large piece (B, 33) was split off and subdivided by sawing with a wire saw (figures 14 and 15). 12021,8 was apparently used for public display (see picture).

Figure 12: Rb-Sr ages and initial Sr/Sr intercept for Apollo 12 basalt 12021 (from Papanastassiou and Wasserburg 1971a).

List of Photo #s for 12021

S69-61985	
S69-64084	
S69-64109	
S70-16782 - 16783	TS
S70-16792 - 16793	TS
S70-20751	iron
S70-20960	TS
S70-49145 - 49150	TS
S70-49467 - 49468	TS
S74-27037	, 8 display
S74-23060	
S76-21649	
S76-21646	slices
S79-27123 - 27124	TS

Summary of Age Data for 12021

Ar/Ar Rb/Sr

Cliff et al. 1971 3.3 \pm 0.1 b.y. Papanastassiou and Wasserburg 1971a 3.33 \pm 0.06

Table 1a. Chemical composition of 12021.

Single 46,46 64,68 64,86 64,86 64,86 64,86 64,87 64,	reference weight	Kushir	71 Goles	s71	O'Kell 1877 (•	Morriso	n71	Cuttitta	a71		Haskin	71	Engel7	1	Khark	ar71
FeO	SiO2 % TiO2	3.44	(a) 3.5	3.5	(b) (b)	9			3.51	3.45	(d)			3.74	(a)	4.17	(b)
CaO 11.37 (a) 9.99 10.5 (b) 1.27 (b) 1.33 (d) 1.34 (a) 11.24 (b) 0.33 (d) 0.08 (a) 0.27 (b) 0.08 (c) 0.07 (b) 0.08 (a) 0.09 (d) 0.09	FeO MnO	19.68 0.26	(a) 19.2 (a) 0.25	19.2	(b)		20.07 0.28	(b) (b)	19.4 0.27	19.1 0.27	(d) (d)			19.04 0.25	(a) (a)		
V	CaO Na2O K2O P2O5 S %	11.37 0.35 0.07	(a) 9.9 (a) 0.26 (a)		(b)	(c)	12.7 0.28	(b) (b)	11.3 0.3 0.06	11.5 0.3 0.05	(d) (d) (d)			11.34 0.29 0.08	(a) (a) (a)		
Cr 2737 (a) 2060 1870 (b) 2500 (b) 2850 3180 (d) 2400 2390 (b) 37 (b) 16 13 (d) 22 32 (b) Ni 29.6 27.7 (b) 87 (b) 16 13 (d) 3 (b) 1 22 32 (b) 1 (d) 3 (b) 1 2 (b) 1 22 32 (b) 1 (d) 3 (b) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			51		. ,											55	(b)
Rb	Cr Co Ni Cu Zn Ga Ge ppb As	2737		1870	(b)		2500 37 87 9.7 4.2	(b) (b) (b) (b)	2850 38 16 13 4.3	3180 36 13 14 4	(d) (d) (d) (d) (d)			2400 22 3			
Nb Mo Ru Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb S	Rb Sr Y								84 53	73 48	(d) (d)			58			
Sb ppb Te ppb Sc ppm Sb ppm S	Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb			100	(b)		140	(b)	133	112	(d)			180			
Ba	Sb ppb Te ppb						32	(b)									
Nd 13 16 (b) 16 (b) 4.75 (b) 3.7 (b) Sm 5.43 5.68 (b) 6 (b) 4.75 (b) 3.7 (b) Eu 1.12 1.24 (b) 1.1 (b) 1.055 (b) 1.2 (b) Gd 8 (b) 6.9 (b) 1.79 (b) Tb 1.41 1.38 (b) 1.4 (b) 1.14 (b) 1.79 (b) Dy 1.7 1.8 (b) 2.1 (b) 1.36 (b) 14.3 (b) Er 7 1.8 (b) 2.1 (b) 1.36 (b) 14.3 (b) Er 7 1.8 (b) 5.3 (b) 5.7 (d) 4.2 (b) 10 4.4 (b) Lu 0.68 0.69 (b) 0.72 (b) 0.523 (b) 0.83 (b) Ta 0.4 0.41 (b) 0.7 (b) 0.5 <td< td=""><td>Ba La Ce</td><td></td><td>7.29</td><td>7.46</td><td>(b)</td><td></td><td>7.2</td><td>(b)</td><td>71</td><td>88</td><td>(d)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Ba La Ce		7.29	7.46	(b)		7.2	(b)	71	88	(d)						
Tb	Nd Sm Eu		5.43	5.68	(b)		6 1.1	(b) (b)				4.75 1.055	(b)				
Ho	Tb		1.41	1.38	(b)							1.14	(b)				
Yb 4.81 4.77 (b) 5.3 (b) 5.4 5.7 (d) 4.2 (b) 10 4.4 (b) Lu 0.68 0.69 (b) 0.72 (b) 0.523 (b) 0.83 (b) Hf 4.03 4.09 (b) 4.6 (b) 4.2 (b) Ta 0.4 0.41 (b) 0.7 (b) 0.523 (b) 0.79 (b) W ppb 150 (b) 0.0 0.79 (c) 0.79 <td< td=""><td>Ho Er</td><td></td><td>1.7</td><td>1.8</td><td>(b)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.36</td><td>(b)</td><td></td><td></td><td>14.3</td><td>(b)</td></td<>	Ho Er		1.7	1.8	(b)							1.36	(b)			14.3	(b)
Os ppb	Yb Lu Hf Ta W ppb		0.68 4.03	0.69 4.09	(b) (b)		5.3 0.72 4.6 0.7	(b) (b) (b) (b)	5.4	5.7	(d)					0.83 4.2	(b) (b)
Th ppm 1.7 1.5 (b) 0.98 (c) 1.1 (b) U ppm 0.26 (c) 0.29 (b)	Os ppb Ir ppb Pt ppb																
			1.7	1.5	(b) 0.98	(c)) 1.1	(b)								0.08	(b)
		(a) cor	ventional	wet, (b)	0.26	(c)			d micro	chem.	XRF, en	nis. S	Spec.		0.29	(b)

Table 1b. Chemical composition of 12021.

reference	Brunfelt	71		Klein71	Tatsumoto	71	
weight SiO2 % TiO2 Al2O3	3.22 11.28	3.22 10.45	(e) (e)	46.2 3.9 12.5	(a) (a) (a)		
FeO MnO MgO CaO	0.27 19.17	0.27 19.68	(e) (e)	19.4 0.24 5.7 11.33	(a) (a) (a) (a)		
Na2O K2O P2O5 S % sum	0.25 0.058	0.24 0.059	(e) (e)	0.29 0.04 0.08	(a) (a) (a)		
Sc ppm V Cr Co	54.6 192 2570 31.7	52.5 217 2650 31.2	(e) (e) (e)				
Ni Cu Zn Ga	8.1 1.2 3.7	8.3 1.2 3.5	(e) (e) (e)				
Ge ppb As Se Rb Sr Y Zr	0.09 0.226 1.19 137	0.18 0.221 1.3	(e) (e) (e)				
Nb Mo Ru Rh Pd ppb							
Ag ppb	100	130	(e)				
Cd ppb In ppb	640	470	(e)				
Sn ppb Sb ppb Te ppb	40	40	(e)				
Cs ppm Ba	0.062 46	0.073 42	(e) (e)				
La	5.9	6.7	(e)				
Ce Pr	24	17	(e)				
Nd Sm	5.32	5.55	(e)				
Eu Gd	1.05	1.04	(e)				
Tb	1.28	1.21	(e)				
Dy Ho	9.1 2.32	9.5 2.22	(e) (e)				
Er	7.9	8	(e)				
Tm Yb	10.2	9.4	(e)				
Lu Hf	1.65 3.8	1.48 3.3	(e) (e)				
Ta	0.43	0.41	(e)				
W ppb Re ppb	0.26	0.21	(e)				
Os ppb Ir ppb	0.1		(e)				
Pt ppb Au ppb	2.1	2.2	(e)				
Th ppm U ppm	5.2 3.3	3.8 3.4	(e) (e)			0.932 0.261	(f) (f)
technique:		ous NAA,		DMS		J.=V !	(.)

Figure 13: Photomicrograph of thin section 12021,135 illustrating elongate pyroxene crystals growing from a common nucleation point. Section is about 2 cm long. NASA S70-43351.

THE CUTTING AND CHIPPING OF SLICE 'B' NO. 12021,33

Figure 14: Slices known as 12021,37.

Figure 15: Pieces cut from 12021,52.